2023 Advanced Manufacturing & Industrial AI Qualify Exam

- The examination will be four hours long.
- There will be six questions in all. Students must select 4 out of 6 questions to answer.
- The exam is open book and open notes. The students can bring any relevant written materials.
- No laptop, tablet, and internet access are allowed.
- Calculator is allowed.

Problem 1 (ISyE 510)

A manufacturing cell has four departments, labeled as A, B, C, D respectively. Four products will be produced by this cell. The daily production rate is given by Table 1. These four departments will be located at four locations, labeled as 1, 2, 3, 4. The distances among these locations are given by Table 2.

Table 1. Production sequence and daily rate

Product type	Processing sequence	Daily production
1	CBDA	150
2	DB	200
3	DCA	250
4	DBACB	300

Table 2. Distance among locations

	1	2	3	4
1	-	80	10	30
2	50	-	20	70
3	90	60	-	40
4	75	60	45	-

Please answer the following questions:

- (a) If we put A, B, C, D at locations 1, 2, 3, 4, respectively, what is the overall material handling cost?
- (b) What is the material handling cost if we switch the location of department A and D?
- (c) If we put department D at location 2, what is the possible minimum material handling cost for the materials flow-in and flow-out of D?
- (d) Given the following matrix, use Hungarian method to find four numbers whose summation is minimized while each one uniquely occupy one row and one column of the matrix. Please note that this matrix is not related with the problem (a)~(c).

92	80	53	60
63	44	55	54
88	98	28	84
64	10	37	15

Problem 2 (ISyE 512)

A beautiful machine came to a bad end on April 20, 2023, when SpaceX's 40-story tall Starship rocket consumed itself in an orange and white fireball just four minutes after launch and 39 km (24 mi.) above the Gulf of Mexico off the coast of Texas.

5 out of 33 Raptor rocket engines failed during the launch, leading to this catastrophic failure.

Fig. 1 (left-right): 1st Generation Starship, Raptor Rocket Engines, Engine Failures, Explosion

As a quality engineer, you are assigned to look into the 2nd generation starship (total 33 engines).

- (1) Suppose the failure of an engine occurs at random, following a Poisson distribution with parameter $\lambda = 0.04$, what is the probability that the 2nd generation Starship will have two or more failed engines in the next launch?
- (2) In the production of 2^{nd} generation engines, two inspectors sampled 10 engines. They use the same gauge to measure the diameter of engines three times each. The USL and LSL are given as 5.0 ± 1.0 inch. The averages and ranges of the measurements on each engine are given below (units are in inches). The total observed variance (σ^2_{total}) is 0.56-inch. What's the estimated variability of engines? What's the estimated σ_{gauge} ? Can you assess the capability of the measurement system?
- (3) Finally, you are asked to establish a control chart for the overall engine production process. This production process continuously manufactures engines. Assuming the inspection unit is one engine, and a common chart for nonconformities is to be used. As a preliminary data, 9 nonconformities were counted when inspecting 300 engines. Can you establish a two-sigma control limits? Can you find out α error for the control chart? Can you find the β error for the chart with two-sigma control limits if the average number of defects is actually one (i.e., c=1)?

Sampled Engine	Inspector 1		Inspector 2	2	
Number	\overline{x}	R	\overline{x}	R	
1	14.9/3	0.1	14.9/3	0.3	
2	15.5/3	0.1	15.3/3	0.0	
3	15.3/3	0.3	15.7/3	0.3	
4	15.0/3	0.2	14.9/3	0.3	
5	14.5/3	0.1	14.5/3	0.1	
6	15.2/3	0.2	15.2/3	0.2	
7	15.3/3	0.0	15.1/3	0.1	
8	15.1/3	0.3	15.1/3	0.5	
9	15.1/3	0.1	14.8/3	0.3	
10	14.2/3	0.3	14.1/3	0.2	
Average	15.01/3	0.17	14.96/3	0.23	

Problem 3 (ISyE 605)

Part A.

Consider 4 jobs J1, J2, J3, and J4 received at day 0 on the production calendar. Each of these jobs needs two steps to be finished. Two workstations A and B are used to handle these two steps, respectively. The processing time for each of these two steps are listed below:

Jobs	J1	J2	J3	J4
Step 1	4	7	3	15
processing time				
(day) at				
workstation A				
Step 2	11	7	9	8
processing time				
(day) at				
workstation B				

Assume the job sequences are the same on A and B in the following problems.

- (1) If the processing sequence of these jobs is J1 -> J2 -> J3 -> J4, what is the makespan of these four jobs?
- (2) What is the mean flow time of these jobs in (1)?
- (3) If we only consider Step 1 and ignore Step 2, then what is the optimal processing sequence to minimize the mean flow time of the jobs passing Step 1?
- (4) If we consider both Step 1 and Step2, please find the optimal processing sequence that minimize the makespan of these 4 jobs.

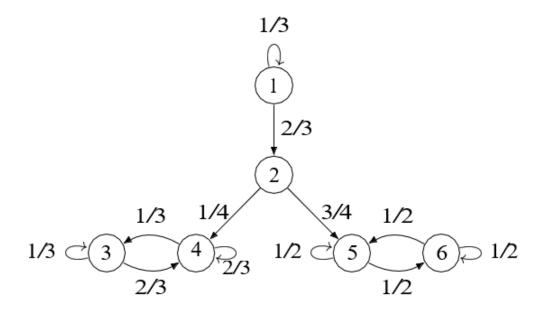
Part B.

If we have 10 control points, labeled as P_0 to P_9 , then

- (1) What are the non-periodic knot values for the 2nd order B-spline curve?
- (2) Find the blending function for control point P_5 , i.e., if the curve is expressed as

$$\mathbf{r}(u) = \sum_{i=0}^{9} N_{i,2}(u) \mathbf{P}_{i}$$
, then find $N_{5,2}(u)$.

Problem 4 (ISyE 641)


The table below shows the average number of jobs per week that flow between different work areas within a manufacturing facility. The facility produces a wide variety of parts from sheet metal and plate metal. The flow is <u>from</u> the work area indicated by the row and <u>to</u> the work area indicated by the column.

		Α	В	С	D	E	F	G	Н	I
Α	Laser 1		0	0	0	185	0	15	37	0
В	Laser 2	0		0	0	90	55	18	24	3
С	Turret Punch Press	0	0		0	15	79	12	36	7
D	Water Jet	0	0	0		28	68	7	16	4
E	Fab Cell 1	0	0	0	0		0	26	204	45
F	Fab Cell 2	0	0	0	0	0		118	145	23
G	Painting	0	0	0	0	0	0		0	138
Н	Welding	0	0	0	0	0	0	0		301
I	Packing & Shipping	0	0	0	0	0	0	0	0	

- a) Propose a POLCA production control system for this facility. How many loops will there be, and what are the loops?
- b) Do you think POLCA seems logical for this scenario? Explain why or why not.
- c) What are the next steps that need to be accomplished if the company moves forward with POLCA?

Problem 5 (ISyE624)

A discrete time Markov chain X_n , $n \ge 0$ with the state space $\{1, 2, 3, 4, 5, 6\}$ has the following transition diagram:

Transition probabilities are given in the diagram next to corresponding transition. (E.g. p(4,3) = 1/3, p(4,4) = 2/3.)

- (a) Find the recurrent and transient states of the Markov chain. (Make sure to provide justification!)
- (b) Show that $\lim_{n\to\infty}P(X_n=\mathbf{3}\mid X_0=\mathbf{4})$ exists and find its value.
- (c) Suppose $X_0 = 2$. What is the long-term fraction of time that X_n spends in the set $\{1, 2, 3\}$?

Problem 6 (ISYE 645)

Suppose that in the newsvendor problem, the demand per period, D, has a Poisson distribution with mean λ . Let $F(\cdot)$ and $f(\cdot)$ be the CDF and PMF of demand distribution. Specifically, we have $f(k) = \lambda^k e^{-\lambda}/k!$. Note that h is the unit holding (or overage) cost, p represents the unit stockout (or underage) cost. The total cost is given by

$$g(S) = \mathbb{E}_d[hI(S,d) + pB(S,d)],$$

where $I(S,d) = [S-d]^+$ and $B(S,d) = [d-S]^+$ are the leftover and shortage, respectively. Suppose further that there exists an optimal base-stock level S^* such that $F(S^*) = p/(h+p)$.

Question: Prove that

$$g(S^*) = (h + p)f(S^*)\lambda$$

[A derivative table is attached in case.]

$$\frac{d}{dx}(c) = 0$$

$$\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$$

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$$

$$\frac{d}{dx}(x^n) = nx^{n-1}, \text{ for real numbers } n$$

$$\frac{d}{dx}(cf(x)) = cf'(x)$$

$$\frac{d}{dx}(f(x) - g(x)) = f'(x) - g'(x)$$

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

$$\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$$

Appendix

3.1	Chart	Chart for Averages	2906		Chart for Averages Chart for Star	Chart for Standard Deviations	d Deviati	ions				Chart	Chart for Ranges	ses		
Observations		Factors for	200	Facto	Factors for	Facto	urs for Co	Factors for Control Limits	nits	Facto	Factors for Center Line	-	actors fo	Factors for Control Limits	ol Limits	
		Control Linus	W V	- College	1/6.	B.	В,	Bs	B_{6}	d_2	1/d2	d_3	D_1	D_2	D_3	D_4
Sample, n	A	A2	743	4	41.64	5	1		2020	1 130	59880	0.853	0	3.686	0	3.267
73	2.121	1.880	2.659	0.7979	1.2533	0 0	3.26/	0 0	2.000	1.693	0.5907	0.888	0	4.358	0	2.575
m	1.732	1.023	1.954	0.8862	1.1284	0 0	2.200		2000	2.050	0.4857	0.880	0	4.698	0	2.282
4	1.500	0.729	1.628	0.9213	1.0834	> <	2.200	0 0	1 964	2.326	0.4299	0.864	0	4.918	0	2.115
S	1.342	0.577	1.427	0.9400	0.0020	0000	070	0000	1 874	2534	0.3946	0.848	0	5.078	0	2.004
9	1.225	0.483	1.287	5156.0	0100.1	0.050	1.970	0.029	1.806	2 704	0.3698	0.833	0.204	5.204	0.076	1.924
7	1.134	0.419	1.182	0.9594	1.0423	0.110	1.815	0.179	1.751	2.847	0.3512	0.820	0.388	5.306	0.136	1.864
9 0 (1907	0.5/5	1.099	0.9630	1.0303	0.239	1.761	0.232	1.707	2.970	0.3367	808.0	0.547	5.393	0.184	1.816
9 5	0.000	0.308	0.975	0.9727	1.0281	0.284	1,716	0.276	1.669	3.078	0.3249	0.797	0.687	5.469	0.225	1.7.1
110	0.005	0 285	7.000	0.9754	1.0252	0.321	1.679	0.313	1.637	3.173	0.3152	0.787	0.811	5.535	0.256	1.744
= =	0.866	0.266	0.886	0.9776	1.0229	0.354	1.646	0.346	1.610	3.258	0.3069	0.778	1.025	5.074	0.207	1.7.1
7 1	0.832	0.249	0.850	0.9794	1.0210	0.382	1.618	0.374	1.585	3.336	0.2998	0.7/0	1.023	5.696	0.307	1.672
14	0.802	0.235	0.817	0.9810	1.0194	0.406	1.594	0.399	1.563	5.407	0.2923	0.756	1.113	5.741	0.347	1.653
15	0.775	0.223	0.789	0.9823	1.0180	0.428	1.572	0.421	440.1	2.4.7	0.002.0	027.0	080 1	5 787	198	1.637
16	0.750	0.212	0.763	0.9835	1.0168	0.448	1.552	0.440	1.526	3.332	10070	0.730	1 356	5 820	0.378	1.622
17	0.728	0.203	0.739	0.9845	1.0157	0.466	1.534	0.458	1.51	5.388	0.2747	0.730	1.424	5.856	0.391	1.608
18	0.707	0.194	0.718	0.9854	1.0148	0.482	1.518	0.470	1.490	2,680	0.2747	0.734	1.487	5.891	0.403	1.597
19	0.688	0.187	0.698	0.9862	1.0140	0.497	505.1	0.490	1.465	3.735	7790	0.729	1.549	5.921	0.415	1.585
20	0.671	0.180	0.680	6986.0	1.0155	0.510	1.490	100.0	2 1	0000	7777	0.724	1,605	5.051	0.425	1.575
21	0.655	0.173	0.663	0.9876	1.0126	0.523	1.477	0.516	9047	2.010	0.2618	0.720	1.659	5.979	0.434	1.566
22	0.640	0.167	0.647	0.9882	1.0119	0.534	1.466	8750	1,440	2.019	0.2010	0710	1 710	900.9	0.443	1.557
23	0.626	0.162	0.633	0.9887	1.0114	0.545	566-1	0.539	1.430 1.430	3.895	0.2567	0.712	1.759	6.031	0.451	1.548
24	0.612	0.157	0.619	0.9892	1.0109	565.0	1.435	0.550	1 420	3.931	0.2544	0.708	1.806	6.056	0.459	1.541
25	0.600	0.153	0.606	0.9890	0.10.1	COCTO	C.+	0.000	1							
For n > 25						ę	c		A6 1)	9						
					A	2 E	$A_3 = \frac{3}{2}$	5 C4	15	- · ·						
						7/^	173	317		ı						
					c		ഞ	11		3						
					D_3		$c_4 \sqrt{2(n-1)}$	4	$c_4\sqrt{2(n-1)}$	$(n-1)^{-1}$						
A					2		ieo.	# =	4.3							
-15					D ₅	- 4 /2($\sqrt{2(n-1)}^{*}$	9	2(n-	1 -						

Appendix II Cumulative Standard Normal Distribution

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du$$

			350 53	**		
z	0.00	0.01	0.02	0.03	0.04	z
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.0
0.1	0.53983	0.54379	0.54776	0.55172	0.55567	0.1
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.2
0.3	0.61791	0.62172	0.62551	0.62930	0.63307	0.3
0.4	0.65542	0.65910	0.62276	0.66640	0.67003	0.4
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.5
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.6
0.7	0.75803	0.76115	0.76424	0.76730	0.77035	0.7
0.8	0.78814	0.79103	0.79389	0.79673	0.79954	0.8
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.9
1.0	0.84134	0.84375	0.84613	0.84849	0.85083	1.0
1.1	0.86433	0.86650	0.86864	0.87076	0.87285	1.1
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	1.2
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	1.3
1.4	0.91924	0.92073	0.92219	0.92364	0.92506	1.4
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	1.5
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	1.6
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	1.7
1.8	0.96407	0.96485	0.96562	0.96637	0.96711	1.8
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	1.9
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	2.0
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	2.1
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	2.2
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	2.3
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	2.4
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	2.5
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	2.6
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	2.7
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	2.8
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	2.9
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	3.0
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	3.1
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	3.2
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	3.3
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	3.4
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	3.5
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	3.6
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	3.7
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	3.8
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	3.9

Appendix II (Continued)

Z	0.05	0.06	0.07	0.08	0.09	Z
0.0	0.51994	0.52392	0.52790	0.53188	0.53586	0.0
0.1	0.55962	0.56356	0.56749	0.57142	0.57534	0.1
0.2	0.59871	0.60257	0.60642	0.61026	0.61409	0.2
0.3	0.63683	0.64058	0.64431	0.64803	0.65173	0.3
0.4	0.67364	0.67724	0.68082	0.68438	0.68793	().4
0.5	0.70884	0.71226	0.71566	0.71904	0.72240	0.5
0.6	0.74215	0.74537	0.74857	0.75175	0.75490	0.6
0.7	0.77337	0.77637	0.77935	0.78230	0.78523	0.7
0.8	0.80234	0.80510	0.80785	0.81057	0.81327	0.8
0.9	0.82894	0.83147	0.83397	0.83646	0.83891	0.9
1.0	0.85314	0.85543	0.85769	0.85993	0.86214	1.0
1.1	0.87493	0.87697	0.87900	0.88100	0.88297	1.1
1.2	0.89435	0.89616	0.89796	0.89973	0.90147	1.2
1.3	0.91149	0.91308	0.91465	0.91621	0.91773	1.3
1.4	0.92647	0.92785	0.92922	0.93056	0.93189	1.4
1.5	0.93943	0.94062	0.94179	0.94295	0.94408	1.5
1.6	0.95053	0.95154	0.95254	0.95352	0.95448	1.6
1.7	0.95994	0.96080	0.96164	0.96246	0.96327	1.7
1.8	0.96784	0.96856	0.96926	0.96995	0.97062	1.8
1.9	0.97441	0.97500	0.97558	0.97615	0.97670	1.9
2.0	0.97982	0.98030	0.98077	0.98124	0.98169	2.0
2.1	0.98422	0.98461	0.98500	0.98537	0.98574	2.1
2.2	0.98778	0.98809	0.98840	0.98870	0.98899	2.2
2.3	0.99061	0.99086	0.99111	0.99134	0.99158	2
2.4	0.99286	0.99305	0.99324	0.99343	0.99361	2.4
2.5	0.99461	0.99477	0.99492	0.99506	0.99520	2.5
2.6	0.99598	0.99609	0.99621	0.99632	0.99643	2.6
2.7	0.99702	0.99711	0.99720	0.99728	0.99736	2.
2.8	0.99781	0.99788	0.99795	0.99801	0.99807	2.8
2.9	0.99841	0.99846	0.99851	0.99856	0.99861	2.9
3.0	0.99886	0.99889	0.99893	0.99897	0.99900	3.0
3.1	0.99918	0.99921	0.99924	0.99926	0.99929	3.
3.2	0.99942	0.99944	0.99946	0.99948	0.99950	3.
3.3	0.99960	0.99961	0.99962	0.99964	0.99965	3.
3.4	0.99972	0.99973	0.99974	0.99975	0.99976	3,
3.5	0.99981	0.99981	0.99982	0.99983	0.99983	3.
3.6	0.99987	0.99987	0.99988	0.99988	0.99989	3.
3.7	0.99991	0.99992	0.99992	0.99992	0.99992	3.
3.8	0.99994	0.99994	0.99995	0.99995	0.99995	3.
3.9	0.99996	0.99996	0.99996	0.99997	0.99997	3.